
Electron correlations in an electron bilayer at finite temperature: Landau damping of the

acoustic plasmon

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 439

(http://iopscience.iop.org/0953-8984/12/4/306)

Download details:

IP Address: 171.66.16.218

The article was downloaded on 15/05/2010 at 19:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter12 (2000) 439–466. Printed in the UK PII: S0953-8984(00)07484-1

Electron correlations in an electron bilayer at finite
temperature: Landau damping of the acoustic plasmon

D S Kainth†, D Richards†, H P Hughes†, M Y Simmons‡ and D A Ritchie‡
† Optoelectronics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
‡ Semiconductor Physics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE,
UK

Received 1 September 1999

Abstract. We report angle-resolved Raman scattering observations of the temperature-dependent
Landau damping of the acoustic plasmon in an electron bilayer system realized in a GaAs double-
quantum-well structure. Corresponding calculations of the charge-density excitation spectrum of
the electron bilayer using forms of the random-phase approximation (RPA), and the static local
field formalism of Singwi, Tosi, Land and Sjölander (STLS) extended to incorporate non-zero
electron temperatureTe and phenomenological damping, are also presented. The STLS calculations
include details of the temperature dependence of the intra- and inter-layer local field factors and pair
correlation functions. Good agreement between experiment and the various theories is obtained
for the acoustic plasmon energy and damping forTe . TF/2, whereTF is the Fermi temperature.
However, contrary to current expectations, all of the calculations show significant departures from
our experimental data forTe & TF/2. From this, we go on to demonstrate unambiguously that
real local field factors fail to provide a physically accurate description of exchange correlation
behaviour in low-dimensional electron gases. Our results suggest instead that one must resort to
a dynamicallocal field theory, characterized by acomplexfield factor to provide a more accurate
description.

1. Introduction

Low-dimensional electron gas systems confined in semiconductor heterostructures provide
ideal systems for the study of electron–electron interactions, providing a high degree of
structural quality and control. The usual theoretical approach adopted for the description
of the collective excitation spectra of such systems is the random-phase approximation (RPA).
However, the RPA does not include the effects of exchange and correlation, which are expected
to be much more important in two-dimensional electron gas (2DEG) systems than in 3D, and to
increase in importance as the number density of the system decreases [1]. To account for these
effects, many authors have gone beyond the RPA for a description of the excitation spectra of
such systems [1–5], by adopting the local field theories of Hubbard [6] and Singwi, Tosi, Land
and Sj̈olander (STLS) [7], which include corrections for exchange and correlation in a simple,
physically motivated manner [8,9]; the success of these approaches can be seen by comparing
their results against Monte Carlo calculations [10]. There have also been reports of a number
of alternative approaches for including exchange–correlation effects in the excitation spectra
of two-dimensional electron systems by adopting:

(i) a non-local approach within a Hartree–Fock approximation for the evaluation of the
irreducible polarizability (see, e.g., references [11] and [12] for the case of inter-subband
excitations in quantum wells);

0953-8984/00/040439+28$30.00 © 2000 IOP Publishing Ltd 439



440 D S Kainth et al

(ii) alternative static local field approaches such as the quasi-localized charge method [13];
(iii) a dynamic local field approach within the quantum STLS theory [14].

However, the static local field STLS approach has remained a firm favourite in the published
literature. Tests of local field theories for three-dimensional systems have been reported for,
e.g., aluminium [15] but there are relatively few reliable experimental tests of these widely
used theories in the density range applicable to semiconductor heterostructures. We report
here such an experimental test and demonstrate that static local field corrections are unable to
provide an accurate description of exchange–correlation behaviour in low-dimensional electron
gases. Indeed we will argue that our results point to the need to examinedynamicallocal field
theories, embodied by acomplexlocal field factor, to achieve a more accurate description of
our experimental results.

Electron bilayers (two parallel 2DEGs in close proximity, produced by MBE growth of a
GaAs/AlGaAs modulation-doped double-quantum-well heterostructure) have been identified
as useful systems for the study of electron correlations in low-dimensional electron systems
because the inter-layer Coulomb interaction can effectively counterbalance the kinetic energy
of the electrons, allowing many-body effects to dominate. Such a system supports two plasmon
modes corresponding to the in-phase (optic plasmon, OP) and out-of-phase (acoustic plasmon,
AP) intra-subband oscillations of the charge densities in each layer [16]. Liuet al have shown
that electron correlations can push the acoustic plasmon curve completely into the single-
particle excitation (SPE) spectrum, resulting in Landau damping of the mode at much smaller
wavevectors than predicted by the RPA [5]. The acoustic plasmon may therefore be used as a
probe of exchange–correlation effects in 2DEG systems, and of Landau damping effects.

Raman spectroscopy is a powerful tool for the study of the electronic excitation spectra
of low-dimensional semiconductor systems [17, 18]. For example, measurements of inter-
subband excitations in quantum wells have indicated the importance of exchange and
correlation in these systems [19]. Applying angle-resolved Raman techniques to electron
bilayers, we have recently determined the dispersion of the acoustic plasmon of a double-
quantum-well structure [20,21]. However, the in-plane wavevectorsq accessible (q . 0.15kF

(the Fermi wavevector), for 2DEG areal densitiesNs ∼ 2× 1011cm−2), determined by the
wavelength of the incident light, are too small to probe exchange–correlation corrections to
the AP dispersion, as predicted in reference [5]. Attempts to extend the wavevector range by
overlaying a grating to couple in higher wavevector transfers [22] did not provide significantly
clear results for any conclusions to be drawn; the superposition of the folded AP and OP
branches in the reduced Brillouin zone of the grating leads to ambiguities in any analysis
of the form of the plasmon dispersions [23]. However, substantial overlap between the SPE
continuum and the AP can be obtained by increasing the electron temperature, resulting in the
Landau damping of the plasmon, as we have demonstrated recently [20].

In this earlier work we characterized the dependence of the Landau damping of the AP
mode in a bilayer system on electron temperatureTe by comparing the AP peak widths meas-
ured using Raman spectroscopy with those calculated using the RPA and the RPA including a
Hubbard (static, zero-Te) local field correction (H-RPA) to account for exchange–correlation
effects [20]. The H-RPA agreed better with the data for low temperatures (Te . TF/2, where
TF is the Fermi temperature) than did the RPA, suggesting that exchange–correlation effects
are important even for the comparatively high 2DEG densities used; but for higherTe, the RPA
gave a better fit, suggesting that at higher temperatures (Te & TF/2) exchange–correlation
effects become less significant and the RPA the more appropriate approach.

The temperature dependence of the Coulomb drag between two 2DEGs has also been
employed recently to study the effects of electron correlations in bilayer systems [24,25]. The
drag mechanism was attributed to Landau damping of the AP [26,27], but although inclusion
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of a 0 KHubbard local field correction provided a better description of the data than that given
by the RPA [24], overall agreement between experiment and theory was not achieved. In both
these Raman and Coulomb drag studies [20,24] it was suggested that using a static local field
correction which wasTe-dependent might be important, and the present work addresses this
point in detail by comparing experimental data with corresponding calculations.

We present here Raman scattering measurements of the Landau-damping-induced width
of the AP as a function ofTe, and hence obtain a measure of the overlap of the AP with the SPE
continuum and of the importance of exchange and correlation in these systems. The data are
modelled using calculations (taking full account of the finite thickness of the quasi-2DEGs,
and of phenomenological damping) in:

(i) the RPA, which is expected to provide a good description when exchange and correlation
are not important;

(ii) the RPA with a 0 KHubbard local field correction to account for exchange–correlation
effects (H-RPA);

(iii) the self-consistent STLS approach,modified to include non-zeroTe.

Most previous theoretical work on exchange–correlation effects in electron bilayers has
assumedTe = 0 K (e.g. references [2] to [5]), but a key feature of our experimental work is that
we have raisedTe substantially (∼TF), and it is important to account for these observations. The
capacity of the STLS approach to include exchange–correlation effects more reliably than the
H-RPA at lowTe is not especially relevant here; indeed, at the relatively high 2DEG densities
and momentum range considered here, the RPA and the STLS approach should produce similar
results [8]. What is important is that the STLS can be readily modified to account for the effects
of non-zeroTe on the static local field corrections.

As will be shown, there remain discrepancies between our experimental results and those
predicted by these theoretical descriptions of electron fluids at non-zeroTe, and this is one
of the central conclusions of this work. In particular, the static STLS and more generallyall
static local field factors fail to describe effectively the effects of exchange and correlation in a
non-degenerate 2DEG. However, our results do suggest that adynamiclocal field correction
could provide an effective description.

The theoretical approaches employed are considered in section 2 and appendix A, in
which we also provide an overview of the RPA, H-RPA and STLS approximations for electron
bilayers. The effects of non-zero temperature and 2DEG thickness on the STLS local field
factors and pair correlation functions are considered in section 3. The calculated forms of
the lineshapes for Raman scattering from the bilayer plasmons at non-zero temperatures are
discussed in section 4. Details of the experimental measurements are provided in section 5 and
in section 6 we present the results of our Raman scattering measurements and discuss them in
terms of the theoretical models.

2. Theory

2.1. The RPA for an electron bilayer

Our starting point for a theoretical description of the excitation spectrum of a double-
quantum-well system is the RPA, which has been used extensively for the study of the
collective excitations in low-dimensional electron systems [28–30], including electron bilayers
[16, 31–33]. Throughout, we will be concerned with excitations of angular frequencyω and
wavevector (parallel to the planes of the 2DEGs)q. We assume that the two 2DEGs, which
will be labelledi andj , are isotropic.
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The charge-density fluctuationδρi(q, ω) in layer i induced by an external potential
φj

ext(q, ω) in layerj is given by

δρi(q, ω) = χij (q, ω)φext
j (q, ω) (1)

whereχij (q, ω) are the elements of the bilayer density response functionχ(q, ω). Within the
RPA (and the STLS approximation), this is given by (see reference [4] for further details)

χ = 1

1− ṽ12̃v21χ1χ2

(
χ1 ṽ12χ1χ2

ṽ21χ1χ2 χ2

)
(2)

wherẽvij (q) is an effective interaction between an electron in layeri and an electron in layer
j ; within the RPA this is the Coulomb interactionvij (q). χi(q, ω) is the density response
function for a single, isolated layer:

χi = χ0
i

1− ṽiiχ0
i

(3)

whereχ0
i (q, ω) is the 2D Lindhard non-interacting electron polarizability for layeri. χ0(q, ω)

for a parabolic conduction band is given by [28]

χ0(q, ω;µ, T ) = 2m

h̄2

∫
dk

(2π)2
f 0(k + q/2)− f 0(k − q/2)

k · q −m(ω + iγ )/h̄
(4)

wheref 0(k) is the Fermi–Dirac function for (temperature-dependent) chemical potentialµ

andγ is a phenomenological damping parameter which we take to be the inverse of the single-
particle relaxation time (γ = 1/2τs). Mermin has shown that for non-zeroγ the above form
for χ0(q, ω) does not strictly conserve particle number [34]; however, the sample quality in
the present work was such thatγ was sufficiently small to ensure that the above approximation
(equation (4)) is adequate.

To evaluateχ0(q, ω) for non-zero temperatures we follow the method set out by Maldague
[35] and rewrite the integral (equation (4)) as [27]

χ0(q, ω;µ, T ) =
∫ ∞

0
χ0(q, ω;µ′, T = 0)

1

4kBT cosh2[(µ− µ′)/(2kBT )]
dµ′. (5)

The polarizability at zero temperature with non-zero damping is given by [36]

χ0(q, ω;µ = EF, T = 0)

= 2m

h2

kF

q

[
B

(
− q

2kF
− ω

vFq
− iγ

vFq

)
− B

(
q

2kF
− ω

vFq
− iγ

vFq

)]
(6)

where

B(x − iα) = 1√
2

[√
2x − sgn(x)

(
(x2 − α2 − 1) +

√
(x2 − α2 − 1)2 + 4x2α2

)1/2]
+

i√
2

[
−
√

2α +
(
(1 +α2 − x2) +

√
(1 +α2 − x2)2 + 4x2α2

)1/2]
. (7)

Using equations (6) and (7), equation (5) can be evaluated numerically to give a form for the
non-interacting electron polarizability at non-zero temperatures with damping.

For a realistic system, it is also necessary to account for the finite spatial extent of
the electron envelope wavefunctions along the confinement direction for the 2DEGs. This
is achieved with the Coulomb form factorsFij , defined byFij (q) = vij (q)/v(q), where
v(q) = e2/2εε0q is the 2D Coulomb interaction andε is the effective dielectric function
for the media surrounding the bilayer. Interactions between plasmons and phonons were
included using a frequency-dependent dielectric constant [21]. Using envelope wavefunctions
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ψi(z), determined (for sample structural parameters corresponding to the experimental sample
discussed in section 5) from a self-consistent solution of the Poisson and Schrödinger equations
(see reference [21] for further details), the form factors

Fij (q) = vij (q)

v(q)
=
∫

dz
∫

dz′ e−q|z−z
′||ψi(z)|2|ψj(z′)|2 (8)

were evaluated numerically for wavevectors up toq = 6kF and fitted to functions of the forms

F11(q) = 1/(1 +bqm)

F12(q) = exp(−d∗qn) (9)

whereb, d∗,m andn are fitting parameters. We show in figure 1 theq-dependence ofF11 and
F12 determined from equation (8), together with the fits obtained using equation (9). The form
factors for the strictly two-dimensional approximation,F 0

11(q) = 1 andF 0
11(q) = exp(−qd),

are also shown for comparison (d is the effective separation of the 2DEGs [21]); for large
wavevectorq the 2D approximations for the form factors fail significantly.

0.0 2.0 4.0 6.0 8.0
q/kF

−25
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(F

12
(q

))
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0.4
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0.8

1

F
11

(q
)

Figure 1. The intra-layer and inter-layer Coulomb form factorsF11 andF12, determined with
quantum size effects taken into account (•). Fits using the functional forms given by equation (9)
are indicated by the solid lines. The dashed lines give the form factorsF 0

11(q) = 1 and
F 0

12(q) = exp(−qd) for the strictly two-dimensional approximation. Note the logarithmic scale
for F12.

The functional forms for the Coulomb form factors given in equation (9), together with
χ0(q, ω;µ, T ) from equation (5), provideχi (equation (3)) andχ(q, ω;µ, T ) (equation (2))
within the RPA.

2.2. The optic and acoustic plasmons of an electron bilayer

The energies of the collective charge-density excitations, the plasmons, of the electron bilayer
system are given (in the absence of damping,γ = 0) by the poles of the density response
functionχ(q, ω). Direct insight into the physical character of the charge-density excitation
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spectrum is obtained by diagonalizingχ(q, ω), to give, as the diagonal elements, the density
response functions for charge-density fluctuations in which the fluctuations in the two layers
are in phase (χ+) and out of phase (χ−) [5]:

χ± = 2
/[( 1

χ1
+

1

χ2

)
±
√(

1

χ1
− 1

χ2

)2

+ 4̃v2
12

]
. (10)

The poles ofχ+(q, ω) andχ−(q, ω) give the optic plasmon (OP) and acoustic plasmon (AP)
respectively.

More experimentally realistic response functions, with non-zero damping (γ 6= 0) allow
us to calculate the cross-sectionR(q, ω) for Raman scattering by charge-density fluctuations
from the imaginary part of the density response functions [17]:

R±(q, ω) ∝ −(n(ω) + 1) Im[χ±(q, ω)] (11)

and hence the expected Raman lineshapes for the two plasmon modes; the energies of the
plasmon modes are determined from the peaks in the intensitiesR±(q, ω). The factor(n(ω)+1)
in equation (11), wheren(ω) is the Bose–Einstein occupation function, was not considered in
reference [20], the result of which was to slightly underestimate the asymmetry and widths of
the theoretically predicted Raman lineshapes. In this work we will not include this factor in our
theoretical analysis but rather correct experimental spectra for its contribution; in particular
this allows for a more meaningful comparison between experiment and theory of peak widths,
which give a measure of plasmon damping.

2.3. The STLS approximation

Although the RPA has been very successful in providing a description of the excitation spectra
of 2DEG systems, it takes no account of the effects of exchange and correlation. This failing
of the RPA becomes clear if we consider the instantaneous pair correlation functionsgij (r),
which give the probability of finding an electron at an in-plane positionr in layerj , given that
there is an electron at the origin in layeri [37]. This is given by [4,37]

gij (r) = 1 +
1√
NiNj

∫
eiq·r[Sij (q)− δij ] dq

(2π)2
(12)

whereNi is the equilibrium number density in layeri. The static structure factorsSij (q) are
related to the density response functionχ(q, ω) by the fluctuation-dissipation theorem [38]:

Sij (q) = −h̄
2π
√
NiNj

P
∫ ∞
−∞

coth

(
h̄ω

2kBT

)
Im[χij (q, ω)] dω (13)

whereP denotes the principal value of the integral.
The RPA gives the unphysical result of negativegij (r) for smallr, implying a much deeper

exchange–correlation hole than is physically realistic and hence overestimating significantly
the correlation energy, the energy of interaction between the electron and its associated
correlation hole [4]. To correct for this, Singwiet al allowed for a local depletion of the
electron density around any given particle [7, 8]. For the two-layer case thisansatzleads to
an effective interaction between the responding electron in layeri and the induced charge in
layerj of the form

ṽij (q) = vij (q)[1−Gij (q)] (14)

where the local field factorsGij (q) are given by

Gij (q) = −1√
NiNj

∫
dk

2π2

q · k
q2

vij (k)

vij (q)
[Sij (|q − k|)− δij ]. (15)
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For an electron bilayer system, theGij (q) are generally positive and so the inclusion of
exchange and correlation creates a ‘hole’ in the induced charge, reducing the strength of
the interaction between the responding electron and the induced charge.

From the local field factorsGij (q) we may determineχ(q, ω), the density response
function of the electron bilayer system, using the modified effective potentialsṽij (equ-
ation (14)) in equations (2), (3) and (10), which in turn allows a determination of the
structure factorsSij (q) through the fluctuation-dissipation theorem (equation (13)). Thus
the determination of the local field factors within the STLS approximation involves the self-
consistent evaluation ofχij (q, ω), Sij (q) andGij (q) (equations (2), (13) and (15)).

Our method for the self-consistent evaluation of these STLS local field factorsGij for a
two-layer system at finite temperature is described in detail in appendix A, and mirrors the
approaches of Tanaka and Ichimaru, who studied a one-component plasma system at finite
temperature in three dimensions within the STLS, principally with a view to modelling stellar
cores [38], and of Schweng and Bohm who extended this work to examine a one-component
electron liquid in two dimensions [39]. Note that for simplicity we assume that the two layers
are of equal density, i.e.Ni = Nj = N . This approximation is justified for the sample studied
experimentally, where any asymmetries between the wells were minimal; calculated Fermi
energies for the two wells were within 0.5% and no experimental asymmetries were observed
in, e.g., photoluminescence measurements or in the dispersive behaviour of the acoustic and
optic plasmon modes at low temperature [20,21].

The local field factorsGij evaluated within the self-consistent scheme outlined in
appendix A are then used to determine the diagonalized density response functionsχ±(q, ω)
(equation (10)), determined with the Lindhard polarizability given by equations (5) and (6).
The RPA result is recovered if the local field factorsGij (q) are set to zero. These density
response functions allow us to determine (through equation (11)), as a function of electron
temperatureTe, the Raman scattering lineshapes for the acoustic and optic plasmons of the
electron bilayer, which we then compare with our experimental results.

2.4. The Hubbard approximation—H-RPA

The simplest way to go beyond the RPA is to avoid the self-consistent scheme set out in the
previous section and to use instead the Hartree–Fock approximation for the static intra-layer
structure factorSii(q) [1], which accounts only for the presence of the Pauli hole around each
electron atT = 0. The effects of non-zero temperature and contributions to the local field from
intra- and inter-layer Coulomb correlations are therefore neglected in this approximation—the
Hubbard correction. The resultant integral forGij (q) (equation (15)) can then be evaluated
explicitly (within an approximation) to yield [1]

GH
ij (q) =


q

2
√
q2 + k2

Fi

if i = j

0 if i 6= j
(16)

wherekFi is the Fermi wavevector in layeri.
This Hubbard local field correctionGH

ij (q) was used to account for the effects of electron
correlations in the analysis of the Coulomb drag measurements of reference [24] and in our
preliminary report on the temperature-dependent Landau damping of the acoustic plasmon in
an electron bilayer [20].



446 D S Kainth et al

3. Calculations of correlations in electron bilayers

We present in this section the dependence of the STLS local field correctionsGij (q) and pair
correlation functionsgij (r) of an electron bilayer on temperature and 2DEG thickness. For
all the calculations presented here, we have taken the parameters for the electron bilayer to
be those for the sample investigated experimentally (see section 5). In fact the results show
that the effects of temperature and non-zero layer thickness on the inter- and intra-layer STLS
local field corrections and correlations are not significant for this sample.

3.1. Temperature dependence of local field factors

Our calculations of the temperature-dependent local field factorsGij (q) for electron bilayers
reproduce the results of earlier calculations in the limit of zero temperature and layer thickness.
In particular we see similar behaviour of the local field factors, as functions of number density
N (or equivalentlyrs = (Nπa2

B)
−1/2) and inter-layer separation (d), to that described by Liu

et al [5].
In figure 2 we show theq-dependence of the local field correctionsG11 andG12 as a

function of temperature (θ = Te/TF). Although the wavevector range (to 6kF) is not relevant
to our experimental work, it was necessary to determineGij for largeq in the self-consistent
STLS scheme (equation (15)), and we present these results for completeness and to illustrate
the integrity of our calculations. The dependence on temperature ofG11 andG12 for q = 0.2kF

(the typical magnitude of wavevector accessible in the Raman experiments) is illustrated in
figure 3. AlthoughG12 increases significantly with temperature, the magnitude of this inter-
layer local field factor is negligible for this wavevector.G11, on the other hand, is much larger
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Figure 2. Variation of the (a) intra-layerG11(q) and (b) inter-layerG12(q) local field factors
with wavevectorq, for θ = 0.05 (solid line), 1.0 (dotted line) and 2.0 (dashed line);θ = Te/TF,
TF = 78 K.
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and is reduced (although by only∼5%) on increasing the temperature from absolute zero to
the Fermi temperature.

Figure 4 shows the dependences ofg11(r) andg12(r), the pair correlation functions, onr,
for several temperatures; the minimum in the pair correlation functions describes the exchange–
correlation hole. The dependence on temperature of the intra-layer pair correlation function
g11(r) is similar to that for a single layer [39]; asTe increases, the radius of the exchange–
correlation hole is reduced, accompanied by a slight deepening of the hole, in accordance with
screening sum rules [37]:∫

[1− gij (r)] dr = δij . (17)

The inter-layer pair correlation functiong12(r) for these comparatively high densities (rs ∼ 1.3)
is, as expected, close to 1.
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Figure 3. Variation of the intra-layer and inter-layer
local field factorsG11(q) and G12(q) with electron
temperatureTe, for q = 0.2 kF. Note the scaling factor
of 103 for G12.

Figure 4. Variation of the pair correlation functions
g11(r) andg12(r), with in-plane separationr, for θ =
0.05 (solid line), 1.0 (dotted line) and 2.0 (dashed line);
θ = Te/TF, TF = 78 K.

3.2. Quantum size effects

In figure 5 we show theq-dependence of the intra- and inter-layer local field correctionsG11

andG12 determined with the finite-thickness effects of the quantum wells taken into account
(using the functional forms forF11 andF12 given in equation (9)), which we compare with
the corresponding results determined within the strictly two-dimensional approximation (for
whichF 0

11(q) = 1 andF 0
12(q) = exp(−qd)). Our results are in line with those for one-layer

systems [1], in that correlations are reduced in going from the ideal to the quasi-2D regime.
The greatest discrepancies occur for large wavevectorq, where the 2D approximations for the
Coulomb potentials fail significantly (see figure 1). In particular, the inter-layer correlations
for a real system do not continue to increase as a function ofq, but instead reach a maximum
and then decline.
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Figure 6 shows a similar comparison between the quasi-2D and ideal-2D cases for the
intra- and inter-layer pair correlation functions,g11 andg12. Compared with the ideal-2D case,
electron–electron effects are expected to be reduced in the quasi-2D regime because the spread
of charge in thez-direction reduces the intra-layer Coulomb interactions; so there should be
a shallower intra-layer exchange correlation hole in the quasi-2D regime, as confirmed in the
calculations. This shallowing of the intra-layer hole is accompanied by a deepening of the
inter-layer hole, as electrons in different layers do not in general want to sit opposite each
other. These effects of the charge spreading in thez-direction are significant for this density
(rs ∼ 1.3) because the mean distance between the electrons (∼1/kF ∼ 90 Å) is significantly
less than the layer width.
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Figure 5. A comparison of theT = 0 local field
correctionsG11(q) andG12(q) determined in the ideal-
2D approximation (dashed line) and with quantum size
effects of the quasi-2DEGs taken into account (solid line).

Figure 6. The pair correlation functions,g11(r) and
g12(r), as for figure 5.

4. Raman scattering from charge-density fluctuations

Figure 7 shows calculated spectra for Raman scattering by the AP (derived from
−Im[χ−(q, ω)]), the OP (from−Im[χ+(q, ω)]) and the SPE (from−Im[χ0(q, ω)]) for
Te = 10 K and 50 K. AsTe increases, the SPE spectrum spreads upwards in energy, as expected.
This results in an increasing population of electrons travelling with the same velocity as the
phase velocity of the AP. These electrons are able to exchange energy efficiently with the
plasmon and so enhanced scattering of the AP by SPE occurs, resulting in an asymmetric
broadening of the AP peak on the low-energy side, a clear signature of Landau damping [40].
The degree of AP broadening, and its asymmetry, can be characterized (this will be discussed
later) in terms of the halfwidths on the higher- and lower-energy sides of the peak. In these
calculations the occupation factor(n(ω) + 1) in the Raman intensity (equation (11)) has been
omitted, to highlight the effects of Landau damping. The effect of this factor, which becomes
more significant with increasing temperature, is to increase the Raman intensity at low Raman
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Figure 7. Theoretical Raman spectra for charge-density fluctuations and SPE forTe = 10 K
(0.13 TF—solid line) andTe = 50 K (0.64 TF—dashed line). The damping parameterγ =
0.09 meV and the wavevectorq = 1.6× 105 cm−1. The occupation factor(n(ω) + 1) in equ-
ation (11) has been omitted. Peaks due to the acoustic (AP) and optic (OP) plasmons are present in
the charge-density-fluctuation spectra. With increasingTe, the SPE continuum spreads to higher
energies, overlapping the AP energy and leading to an asymmetric broadening of the AP peak,
resulting from Landau damping.

shifts, leading to a further slight increase in asymmetry of the AP peak.
Note that the OP peak, at rather higher energy, does not overlap the SPE continuum, and

is not detectably broadened by Landau damping, even at 50 K. Figure 7 also shows the upward
drift in the energies of the AP and the OP with increasing temperature, a well known classical
effect to which we will return.

5. Experimental measurements

5.1. Sample details

The sample investigated (T229; sample C in references [20] and [21]) consists of two GaAs
quantum wells of widthLw = 180 Å, separated by an Al0.67Ga0.33As barrier of width
Lb = 125 Å, giving an effective inter-2DEG separationd ∼ 305 Å. These parameters are close
to optimal for this study, in thatLb is large enough to preclude inter-well tunnelling [21] (we
have throughout assumed a quantum mechanically decoupled system), while the inter-layer
separationd is small enough to lead to significant inter-layer Coulomb interactions, which
depress the energy of the AP mode towards the SPE continuum and increase its susceptibility
to many-body effects.

The number densitiesN1 andN2 in the two wells under laser illumination were obtained
from a fit, calculated within the STLS approximation, of the low-temperature experimentally
determined AP and OP dispersions [21]. It was found thatN1 and N2 were equal to
within ∼5%, as expected since the two wells were grown to be equivalent.N1 = N2 =
(1.95± 0.10)× 1011cm−2; see reference [21] for further details.

The sample was mounted in a He-cooled cryostat and its temperature controlled by
electrical heating.
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5.2. Determination of the electron temperature

The effect of the 2DEG temperatureTe on the plasmons was studied by varyingTL , the
lattice temperature. An accurate determination ofTe was critical for the interpretation
of our experiment, and was achieved by carefully studying the quantum well and bulk
photoluminescence (PL) lineshapes, determined under the same conditions as the Raman
scattering measurements presented below; i.e. for excitation photon energies>1.65 eV and
high powers (40 W cm−2), with Te > 25 K. The strength of the bulk PL signal from the GaAs
buffer layer was found to be some 25 times greater than the quantum well signal, as shown in
figure 8(a); the lower-energy signal is due to the bulk GaAs, and the weak shoulder at∼1.53 eV
is the quantum well PL (this assignment has been confirmed by PL and PLE measurements
performed with lower power densities and electron temperatures). Consequently the PL tail
from the bulk GaAs must be fitted and subtracted from the experimental spectra to give the
quantum well PL; a fit to the bulk PL lineshape is shown in figure 8(a).

Having stripped the PL spectrum of the bulk PL, the remaining quantum well PL lineshape
LQW(ω) was taken to be

LQW(ω, Te) ∝
∑
k

fe(Ee,k, Te)fh(Eh,k, Te)δ(E
′
g +Ee,k +Eh,k − h̄ω) (18)

wherefe(h) are the Fermi–Dirac occupation factors for electrons (holes) with kinetic energy
Ee,k (Eh,k) and wavevectork. E′g is the quantum well band-gap and ¯hω is the PL photon
energy. Given the temperature range over which the measurements were made, simplifications
to the form ofLQW(ω, Te) (e.g. by making assumptions about the degeneracies of the electrons
and holes) were not possible, and the experimental quantum well PL lineshapes were fitted to
LQW(ω) assuming only that:

(i) Coulomb scattering renders the electron and hole temperatures equal;
(ii) the total extrinsic electron density (1.95×1011cm−2 for each quantum well) did not change

with temperature;
(iii) the photocreated and thermal electron and hole population densities (used as fitting

parameters) were equal.

The electron and hole effective masses were taken to be 0.07 and 0.18 respectively. Note that
this procedure cannot quantitatively take into account the effects of disorder which can be
important in determining the luminescence lineshape for energiesE � EF. However, for our
determination ofTe we have principally analysed the quantum well PL for energiesE / EF.

We show in figure 8(b) a logarithmic plot of the experimental quantum well PL for three
different temperatures, along with fits of the form given in equation (18). The data do not fit
a straight line (the exponential form often used) except well into the higher-energy part of the
PL tails where the errors in the data and disorder effects are significant.

By fitting the bulk and quantum well PL lineshapes in this way, we were able to determine
the temperatureTe of the 2DEG for each Raman measurement with a maximum error (for the
highest temperatures) of∼10%. We were able to derive a value for the lattice temperatureTL

from the form of the variation ofEg (determined from the bulk PL) withTL [41]:

Eg = Eg(TL = 0)− (5.408× 10−4 eV)(TL/K)2

(TL/K) + 204
. (19)

It was felt that the value determined forTL (obtained from a peak energy) had less error
associated with it than that forTe. We show in the inset of figure 8(a) the variation ofTe with
the lattice temperatureTL ; the laser illumination is seen to heat the electron gas substantially
above the lattice temperature for lowTL (due to the relatively high photon energy and power
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Figure 8. (a) The bulk PL signal forTe = 26 K and a magnified (×4) view of the quantum well
PL. The solid line indicates the fit described in the text. The inset shows the variation of the 2DEG
temperatureTe with the lattice temperatureTL . (b) The log of the quantum well PL intensity (•)
for various temperaturesTe (spectra are displaced vertically for clarity). Fits to the data, using
equation (18), are indicated by the solid lines.

densities used), withTe andTL converging forTL & 30 K. It is important to note that the
determinations ofTe andTL are independent; we are able therefore to use the value ofTL as a
lower bound for the value ofTe (given the heating effects of any incident illumination on the
electron gases). Figure 8(a) thus suggests that we do not significantly overestimate the carrier
temperature—a factor which has a bearing on the interpretation of our experimental results.
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5.3. Raman scattering measurements

Angle-resolved Raman scattering measurements were made under incoming resonance
conditions, and with the polarizations of the incident and scattered light parallel to allow
the observation of plasmons [17]. The band-gap decreased with increasing lattice temperature
TL , so to maintain the conditions for an incoming resonance the laser wavelength was increased
correspondingly. For the low-temperature measurements the energy of the resonance used was
1.656 eV. Rather than determine a resonance profile for each measurement temperature, the
shift with increasingTe in the resonance energy from this value was determined usingTL and
the known variation of the semiconductor band-gap with temperature (equation (19)).

As the temperature increases, the tail from the bulk band-gap PL increases considerably,
and can overwhelm the comparatively weak Raman signals. Fortunately the resonance utilized
here was sufficiently far from the band-gap PL to allow Raman measurements to be made over
a reasonably large temperature range. The band-gap PL, and the hot PL originating from the
inter-band transition responsible for the Raman resonance, limited the Raman measurements
to Te . 110 K.

5.4. Single-particle lifetime

In our calculation of the Raman scattering lineshapes for the plasmon modes, the
phenomenological damping constantγ (see equation (4)) is taken to be the inverse of the 2DEG
single-particle relaxation timeτs, which we determined experimentally from the dependence
of the magnitude of the Shubnikov–de Haas oscillations on the magnetic field; only one
Shubnikov–de Haas oscillation frequency was observed, indicating that the two quantum well
densities were the same. The amplitude(1R) of the Shubnikov–de Haas oscillations is given
by [42]

1R = 4R0X(T ) exp

(
− π

ωcτs

)
(20)

whereR0 is the zero-field resistance,ωc the cyclotron frequency, andX(T ) a thermal damping
factor given by

X(T ) = 2π2kBT/h̄ωc

sinh(2π2kBT/h̄ωc)
. (21)

For our samples,τs was found to be of the order of 3.5 ps for Shubnikov–de Haas oscillations
measured at 4 K. Using this value, we were able to fix the low-temperature halfwidth of the
plasmons as ¯hγ = h̄/2τs = 0.09 meV.

6. Results

6.1. Temperature-dependent Raman scattering

A Raman spectrum forTe = 93 K is shown in figure 9(a); at such high electron temperatures the
Raman signals are superimposed on quite intense background PL arising from the quantum
well inter-band transition responsible for the Raman resonance (‘hot’ PL, at small Raman
shifts) and also from the GaAs buffer layer (bulk PL, at high Raman shifts). In addition,
the importance at such elevated temperatures of the occupation factor in the Raman intensity
(n(ω) + 1 in equation (11)) is also responsible in part for the large intensity at small Raman
shifts. In order to facilitate comparison between experiment and theory, especially for the AP
damping as characterized by Raman peak widths, the experimental spectraI (ω) were first
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divided by the occupation factor(n(ω) + 1), as shown in figure 9(a). Fits to the lineshapes
I (ω)/(n(ω)+ 1)were then obtained using exponential tails to describe the PL contributions to
the experimental lineshapes; the result of such a fit is indicated in figure 9(a). The exponential
bulk and hot PL tails were then removed to give a corrected Raman signal, also shown in
figure 9(a), in which the effect of the occupation factor(n(ω) + 1) has been removed.

Figure 9(b) shows Raman spectra measured for a range of electron temperaturesTe, for
an in-plane wavevector transferq = 1.6× 105 cm−1. These spectra have been corrected as
described above to leave signals due principally to the plasmons. Two peaks are present, which
we assign to the acoustic and optic plasmons of the 2DEG [20]. The OP is seen to broaden
symmetrically asTe rises, whereas the AP is seen to broaden asymmetrically and to a much
greater extent.

We ascribe the asymmetric broadening of the AP to Landau damping arising from the
increasing interaction with the lower-lying SPE continuum asTe is increased (as discussed in
section 4 and illustrated in figure 7). The broadening withTe of the OP peak may be attributable
to increased scattering by un-ionized impurities in the sample bulk as the temperature increases;
this scattering is greater for the OP than the AP as away from the bilayer region the electric
fields associated with the symmetric OP are much greater than those of the antisymmetric
AP [29]. We have also shown that this effect can account for the observed dependence on
2DEG mobility of the relative strengths of Raman scattering by the AP and OP [21].

The observed AP width involves several contributions—Gaussian terms such as
inhomogeneous broadening effects, spectrometer resolution and broadening due to the spread
of in-plane wavevectors accepted by the numerical aperture of the collecting lens, and
Lorentzian contributions from electron scattering (described by the parameterγ in equation (4))
and Landau damping. These combine according to

1ωL 1ωtot + (1ωG)
2 = 1ω2

tot (22)

where1ωL (1ωG) is the Lorentzian (Gaussian) contribution to the total halfwidth at half-
maximum (HWHM),1ωtot [43]. To allow easy comparisons with the calculated spectra, the
Gaussian contributions to the halfwidths were deconvolved from the experimental spectra by
adapting a method originally due to Dobryakov and Lebedev [43]. As a result the net Gaussian
contribution to the FWHM (full width at half-maximum) was estimated to be 0.06 meV, in good
agreement with the observed width of the Rayleigh scattered laser line (cf. the single-particle
relaxation FWHM 2γ = 0.18 meV).

Because the AP lineshape is asymmetric, HWHMs on either side were measured and
equation (22) used to subtract1ωG in each case to producey1 andy2, the HWHMs of the
Lorentzians on the low- and high-energy sides, respectively (illustrated in figure 9(a)). The
width of the AP, once Gaussian contributions have been subtracted, is a measure of the total
homogeneous damping experienced by the plasmon mode. The difference betweeny1 andy2,
on the other hand, gives information about the energy-dependent damping responsible for the
observed asymmetry of the AP peak; thusy1−y2 gives a direct measure of the Landau damping
experienced by the AP. In this way, by comparingy1 andy2 with theoretically calculated
halfwidths, we have a direct handle on the many-body interactions of the AP with the SPE
continuum.

We should note that the SPE band itself is potentially observable in both polarized and
depolarized Raman spectra. However, at low temperatures no SPE signal was observed in
either polarization forq = 1.6× 105 cm−1. For q = 1.16× 105 cm−1 the SPE band is in
a spectral region too close (a Raman shift less than∼1 meV) to the exciting laser line to be
observed.
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Figure 9. (a) A spectrumI (ω) measured for an electron temperatureTe = 93 K is shown in the
upper panel and the spectrum corrected for the Raman occupation factor(n(ω) + 1) is shown in
the lower panel;q = 1.6× 105 cm−1. The points show the experimental spectrum; the solid lines
indicate the fit to the spectrum (mainly obscured by the points due to the good fit) and the fit with
the exponential backgrounds due to the bulk and hot PL removed. In the upper panel the bulk and
hot PL contributions are indicated by the dashed lines, and the total PL contribution by the dotted
line. The HWHMs (halfwidths at half-maximum),y1 andy2, used to parametrize the peak widths,
are indicated. (b) Corrected Raman spectra (with the background PL spectra subtracted and the
(n(ω) + 1) occupation factor removed) of the acoustic (AP) and optic (AP) plasmons for various
electron temperaturesTe; q = 1.6× 105 cm−1. Note the broadening and developing asymmetry
of the AP with increasingTe, resulting from Landau damping.

6.2. Total AP damping

We now consider the comparison between the experimentally observed and theoretically
calculated AP total linewidths as a function of temperature. Figure 10(a) shows a plot of
the experimentally determined FWHM (y1 + y2) for q = 1.16× 105 cm−1, after removing the
Gaussian contributions as described above. The experimental uncertainties in these FWHM
values are of the order of±0.02 meV for lowTe, rising to±0.06 meV for higher temperatures.
Figure 10(b) shows the corresponding results forq = 1.6 × 105 cm−1. The three curves
show the results of calculations of the FWHM determined within: (i) the RPA; (ii) the H-RPA;
(iii) the finite-temperature STLS formalism described in section 2.

We can see from figure 10 that the larger the magnitude of the local field correctionG11,
the greater the increase in damping with increasingTe; as the Hubbard intra-layer local field
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correctionG11 is greater than that obtained within the STLS, for a givenTe the H-RPA predicts
a greater width than that calculated using the STLS approximation, which is in turn greater
than that obtained within the RPA.

For lowTe, for both wavevectors, the experimentally determined FWHM and the calculated
values agree quite well, especially as it should be noted that no free fit parameters were used
for these curves—the 0 K theoretical FWHM was fixed from the experimental single-particle
relaxation times (section 5.4). But since the experimental uncertainties at these values ofTe

are smaller than the point size in the figure, the better agreement between the data and the
H-RPA and STLS curves, as opposed to the RPA calculation, is significant, and suggests that
it is necessary to include exchange–correlation effects even for these densities.

However, the experimentally determined plasmon widths increase withTe much more
slowly than is predicted theoretically, and forTe & TF drop below even the values predicted
by the RPA. This could be interpreted in terms of a reduction in the significance of correlation
effects at these temperatures, at which the RPA then provides a better description. However,
the STLS calculation, which should take full account of the effects of non-zero temperature,
does not show this behaviour, reflecting the relative constancy of the intra-layer local field
correctionG11 over this temperature range (see figure 3). So it appears that forTe & TF,
further theoretical developments are necessary.

These calculations take no account of any dependence on temperature of the single-particle
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Figure 10. Experimental (•) and theoretical (curves) results for the total width of the AP as
a function ofTe. Calculations have been performed within the RPA (dashed line), Hubbard
approximation (dotted line) and finite-temperature STLS (solid line). (a)q = 1.16× 105 cm−1,
(b) q = 1.6× 105 cm−1.

relaxation rateγ . However, if anything we would expect the single-particle lifetime to decrease
with increasing temperature, leading to even larger theoretical linewidths than those calculated
here and increasing yet further the discrepancy between experiment and theory.

6.3. AP asymmetry

For a givenTe it is expected that the low-energy side of the AP peak will be more affected by
Landau damping than the high-energy side, as the SPE continuum lies below the AP dispersion
curve. A measure of this asymmetric broadening is(y1− y2), which is plotted in figure 11 for
both experiment and theory, again for bothq = 1.16 and 1.6× 105 cm−1.

It is expected that(y1 − y2) → 0 asTe → 0 (the peak shape would be a symmetric
Lorentzian) and increase with increasingTe. Experimentally, forq = 1.6× 105 cm−1 (fig-
ure 11(b)),(y1−y2) increases with lowTe as expected, but at higher temperatures (Te ∼ 70 K) it
becomes roughly constant. For the smaller wavevector ofq = 1.16×105 cm−1 (figure 11(a)),
the discrepancy between experiment and theory is greater and(y1 − y2) is essentially zero
over the measured temperature range. In contrast to this, all the theoretical models predict a
continuous increase in(y1 − y2) with rising Te. It is important to note that any temperature
dependence of the single-particle lifetime (∼1/2γ ) is unlikely to affect this measure of the
asymmetry of the peak; we are sensitive here only to the effects of Landau damping.

Another measure of the Landau damping is provided by the degree of asymmetry,
α = (y1 − y2)/(y1 + y2), shown in figure 12 for experiment and for our STLS calculation.
For the two wavevectors considered, the STLS theory predicts essentially the same variation
with temperature, withα levelling off nearTF. This insensitivity ofα to the wavevector
is to be expected, as both the AP and the SPE continuum have a similar, approximately
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Figure 11. The asymmetry of the AP (defined asy1 − y2), as for figure 10.
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Figure 12. The degree of asymmetry of the AP Raman peak,α = (y1 − y2)/(y1 + y2),
for experiment (points) and theory, within the finite-temperature STLS formalism (curves), for
wavevectorsq = 1.16 (◦, dashed line) andq = 1.6× 105 cm−1 (•, solid line).

linear, dependence onq, for the small wavevectors (q � kF) considered here. However, the
experimental results for the two wavevectors are markedly different. Forq = 1.6× 105 cm−1

there is a fairly good agreement between experiment and theory over the whole temperature
range, although the experimental uncertainties are large (∼± 40% for highTe); note, though,
that the calculations overestimate the FWHM of the AP peak at higher temperatures. For
q = 1.16× 105 cm−1 there is a significant discrepancy between experiment and theory.
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6.4. AP energy

Figures 13(a) and 13(b) show the energyωAP of the acoustic plasmon as a function ofTe

for q = 1.16 and 1.6× 105 cm−1, for both experiment and theory. The 2DEG density for
the calculations was set so that the AP dispersion obtained within the STLS approximation
matched the experimentally determined dispersion at low temperature [21]. (Previously [20],
the density was obtained using a fit determined within the H-RPA, resulting in a slightly higher
density than that used here; this results in the slight shift of the RPA and H-RPA curves with
respect to our data for(y1 + y2) (figure 10) and(y1 − y2) (figure 11), compared with those
presented in figure 4 of reference [20].)

All the theoretical curves show a large increase (∼30%) of the AP energy with temperature,
for both wavevectors. The OP energyωOP was also found to increase withTe, although by
only∼10%. Such behaviour is well known for classical Maxwell–Boltzmann plasmas [44],
and similar calculations carried out for a 2D plasma correspond closely to our RPA results at
higher temperatures.

Figure 13 shows that the inclusion of exchange–correlation effects reduces the calculated
values ofωAP, as would be expected from the softening of the effective interaction potentials
ṽij (equation (14)). The weak temperature dependence of the STLS local field correction (see
figure 3) does not significantly alter the variation of the plasmon energy withTe.

Experimentally, forTe . 50 K (TF = 78 K), ωAP increases withTe, in keeping with
the calculations. However, for both wavevectors, forTe & 50 K,ωAP remains approximately
constant, in contrast with the theories, all of which predict a steady increase in the plasmon
energy. The variation of the OP energyωOP with temperature follows essentially the same
pattern as that of the AP (see figure 9(b)), although there is better agreement between exp-
eriment and theory due to the smaller predicted increase ofωOP (∼10%) withTe.
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Figure 13. AP energyωAP, as for figure 10.
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6.5. Discussion

AboveTe ∼ 50 K, there are significant discrepancies between experiment and theory. All three
calculations show an increase inωAP, contrary to the observed plateau behaviour, and all three
overestimate the width and asymmetry. Not only does the RPA fail to describe our results, but
so does the full temperature-dependent STLS scheme. We believe that these discrepancies are
significant, suggesting a failure of the static local field theories used here to describe adequately
the excitation spectra of non-degenerate low-dimensional electron gases.

To demonstrate that this is the case, we must firstly to examine whether alternative causes
of the observed plasmon behaviour, such as changes withTe of the 2DEG densities, or of their
background screening, could explain our experimental results. Figure 14 explores the effect of
possible changes in the 2DEG densities by plotting, for various 2DEG densities, calculations
of ωOP, ωAP and the AP FWHMδωAP ≡ (y1 + y2) as functions ofTe for q = 1.6× 105 cm−1,
together with the corresponding experimental results. (For expediency, the STLS local field
factors self-consistently determined for a density of 1.95× 1011 cm−2 (figure 3) were used
in the calculations for all densities; this can be justified by the small variation in the low
Te-values forG11 andG12 over the relatively small range of densities considered.) The
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Figure 14. Experimental (•) and theoretical (curves) temperature (Te) dependences forq =
1.6 × 105 cm−1 of (a) the OP energyωOP; (b) the AP energyωAP; (c) the AP damping
δωAP ≡ (y1 + y2). The theoretical curves have been determined for electron densities of (solid
lines) 1.95, (dashed lines) 1.7 and (dotted lines) 1.5× 1011 cm−2, using STLS local field factors
given in figure 3.
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observed temperature dependence ofωAP (figure 14(b)) would require a significant reduction
in 2DEG density (by about 30% for the highest measurement temperatures), though a much
smaller reduction (∼15%) would account for the behaviour ofωOP (figure 14(a)). Moreover,
figure 14(c) shows that the AP dampingδωAP actually increases with decreasing density,
worsening the discrepancy between experiment and theory; for a givenTe, the smallerTF

resulting from a decrease in density effectively increases the reduced temperatureTe/TF and
enhances the Landau damping. So although a reduction in density with temperature could
account for the observedTe-dependence ofωAP, the corresponding temperature dependence
of ωOP andδωAP cannot be reconciled to this.

We have assumed throughout that the two 2DEGs are of equal density, an assumption
borne out at low temperatures from the form of the plasmon dispersions [20,21]. However, a
temperature-induced asymmetry in the electron distribution between the two quantum wells
(the total electron density remaining constant) might occur; calculations (within the H-RPA
for computational simplicity) show (figure 15(b)) that this would result in a reduction ofωAP,
and that agreement between experiment and theory is possible at the highest measurement
temperatures forN1/N2 ∼ 3 (i.e.N1 ∼ 2.9 andN2 ∼ 1.0× 1011 cm−2). However, not only
is this a very significant asymmetry, but again neither theTe-dependence ofωOP, or that of
δωAP, fall into line with this. An asymmetric density distribution results in a slight increase in
ωOP (figure 15(a)) as the two plasmon modes decouple and the OP becomes more localized in
the higher-density layer; at the same time the AP becomes more localized in the lower-density
layer, leading to the observed reduction in energy. An increasing density asymmetry also leads
to an increase in the Landau damping of the AP, which comes closer to (and enters, for a large
difference between the densities) the SPE continuum of the higher-density layer [5].

The variations ofωOP andωAP with Te (see figures 14 and 15) also indicate that changes
in background screening (from, e.g., un-ionized donors in the doped AlGaAs layers) are not
responsible for the reduction inωAP from the theoretical values. If this were the case, we
would expectωOP to be affected to a much greater extent, as seen in the widths of the two
plasmon peaks (see section 6.1 and figure 9). In addition, although increased screening would
reduceωAP, the SPE continuum would be unaffected, resulting in increased Landau damping,
contrary to observation.

It could be argued that agreement between our experimental measurements and calc-
ulations could be achieved on the basis that the electron temperature—a quantity, which as
we have seen above is relatively difficult to determine—has been overestimated. We have,
however, already seen that this explanation is unlikely becauseTL , the lattice temperature
(which for temperatures'30 K is almost identical toTe) provides an accurate lower bound
for the electron temperature; certainly it is very unlikely that both measures of temperature
could overestimateTe by ∼35%—the amount required to achieve agreement between the
experimental data and the calculations.

Therefore it appears that the inability of our calculations to model our experimental results
for the energy and damping of the AP cannot be simply attributed to an experimental artifact,
such as a decrease in 2DEG density with temperature. We must thus examine whether the
use of a static local field correction provides an accurate description of the effect of exchange
and correlation on the excitation spectra of non-degenerate quasi-two-dimensional electron
systems. In order to obtain better agreement with experiment for the AP energy, the magnitude
of G11 must increase with temperature, whereas to obtain an improved fit for the measured
AP damping,G11 must decrease†. This contradiction suggests that a real local field factor (as

† Changes to the inter-layer local field factorG12 are unlikely to have a significant effect, given the weakness of
inter-layer correlations demonstrated in section 3, and so we can setG12 = 0.



Electron correlations in an electron bilayer at finite temperature 461

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

 δ
ω

A
P
 (

m
eV

)

2.5

3.0

3.5

 ω
A

P
 (

m
eV

)

6.0

6.5

7.0

 ω
O

P 
(m

eV
)

Te(K)

(a)

(b)

(c)

Figure 15. Experimental (•) and theoretical (curves) temperature (Te) dependences forq =
1.6 × 105 cm−1 of (a) the OP energyωOP; (b) the AP energyωAP; (c) the AP damping
δωAP ≡ (y1 + y2). The theoretical curves have been determined within the RPA using a Hubbard
local field correction for a total electron densityN1 +N2 = 3.9× 1011 cm−2 with N1/N2 = 1.0
(solid lines), 1.9 (dashed lines), 2.3 (dotted lines) and 4.0 (dot–dashed lines).

calculated within the framework of a static theory) cannot explain our observed results. This
is one of the central conclusions of this work.

We are led therefore to consider whether a complex local field correction,G11 =
G′11 + iG′′11, as suggested in the context of a dynamic local field theory [14, 45], is any more
successful in characterizing the observed behaviour. For a given temperatureTe,G′11 (the real
part ofG11) was determined from the energy of the acoustic plasmonωAP;G′′11 (the imaginary
part ofG11) was found to have a negligible affect onωAP. Singwi and Tosi [8] have argued
that the imaginary part of the local field correction is important in determining the lifetimes
of plasmon modes. So, using the derived value forG′11, the imaginary partG′′11 was then
determined by fitting the plasmon dampingδωAP. In order to give a reduction in the AP
damping, to bring theory in line with experiment,G′′11 was determined to be positive. As well
as now providing complete agreement between experiment and theory for theTe-dependence
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of ωAP andδωAP, the resulting complex local field factor,G11 = G′11+ iG′′11, was also found to
provide a more accurate description of the optic plasmon energyωOP and the AP asymmetry
for both wavevectorsq considered here. The variation with temperatureTe of these fitting
parameters, the real and imaginary parts ofG11, is shown in figure 16 for the two wavevectors
q. For Te . TF/2, the real and imaginary parts of the local field correction are similar to
the values obtained within the STLS; in particularG′′11 is zero. However, forTe & TF/2, the
temperature range over which the static STLS approach was found to fail, we see that both
the real and imaginary parts of the intra-layer local fields increase withTe. This is perhaps
surprising, given our initial expectation that exchange–correlation effects should become less
important with increasing temperature. Nevertheless, it is significant that the only way in
which we have been able to obtain agreement between experiment and theory is through the
incorporation of a complex local field correction.
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Figure 16. The temperature (Te) dependence of the real partG′11 (•) and imaginary partG′′11
(◦) of the intra-layer complex local field factorG11(q, ω), used as a fitting parameter to provide
agreement between experiment and theory for the AP energyωAP and the AP dampingδωAP. The
inter-layer local field factor is set toG12 = 0 (a valid approximation given its relatively small
magnitude). (a)q = 1.16× 105 cm−1, (b) q = 1.6× 105 cm−1.

Finally, we observe that our conclusions are consistent with the results of measurements
of the AP-mediated Coulomb drag between two electron layers in samples similar to that
studied here [24, 25]. In particular, in such experiments the onset temperature for plasmon
enhancement of the drag rate is determined by the energies of the acoustic plasmons. A
suppression of the AP energies from that expected within the RPA, as observed in our Raman
measurements, should lead to the plasmon enhancement in the Coulomb drag rate occurring at
a lower temperature than that predicted by the RPA; this is indeed observed in references [24]
and [25]. On the other hand, an increase in the damping of the plasmons leads to an increase
in the magnitude of the plasmon enhancement in the drag rate. Hillet al found that although
the use of a Hubbard static local field factor resulted in better agreement between theory
and experiment for the onset temperature, due to the suppression of the AP energies, the
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resultant increase in the plasmon damping leads to an overestimate of the magnitude of the
enhancement [24], which mirrors the results of the Raman measurements of the AP damping
presented here (i.e. at higher temperatures we find that the plasmon damping is reduced from
that predicted by theory). Our use of a complex local field factor to reconcile the behaviour of
the plasmon energy and damping is consistent with the conclusions of Nohet al, who suggested
that a dynamic local field theory could account for their Coulomb drag results [25], although
they implied that this would lead to a broadening of the plasmon modes, whereas we find the
damping (as determined from the Raman lineshape) to be less than that predicted by the RPA.

7. Summary

To conclude, we have analysed the temperature dependence of the Landau damping of the
acoustic plasmon in an electron bilayer, with a view to obtaining a measure of the importance
of exchange–correlation effects in such systems. To this end, we have modelled the density
response of our system using the Singwi–Tosi–Land–Sjölander (STLS) approximation, in
which we have taken full account of the effects of finite temperature. The most significant
message of these calculations is that non-zero temperature correlations within the STLS differ
little from their zero-temperature counterparts at low wavevector. Increasing the temperature
leads to an increase in the kinetic energy of the electron gas, implying a decrease in the
significance of many-body effects in determining its behaviour. Naı̈vely we could have
expected our temperature-dependent local field corrections to show a transition from the H-
RPA (a model including exchange–correlation effects to some degree) to the RPA (a mode in
which exchange and correlation are not included) [20]. If this were the case we would have
expected a much greater decline in the local field corrections towards zero asTe is increased.
However, this does not seem to be the case for the static local field corrections that we have
calculated within the STLS.

Experimentally, we determined the electron temperature of the 2DEGs from measurements
of the photoluminescence, which gives an accurate determination of the temperature under the
same conditions as for the Raman measurements. Our Raman lineshapes displayed the clear
signature of Landau damping of the acoustic plasmon, indicated by the asymmetric form
of the Raman peak. Careful analysis of the spectra allowed us to extract three parameters
which characterize the lineshape and energy of the acoustic plasmon:y1 andy2, the low- and
high-Raman-shift halfwidths of the plasmons, and the AP energy itself. These parameters
were compared with theoretically calculated values, determined within the RPA and within
the H-RPA and STLS local field theories, thereby giving us a means to analyse the success
of these theories in modelling electron gases of intermediate degeneracy. We found that
for Te . TF/2 the inclusion of exchange–correlation effects using a local field correction
is necessary—indeed sufficient—to obtain good quantitative agreement for the asymmetric
Landau damping. Conversely, forTe & TF/2 none of the theories modelled successfully the
AP asymmetry, or its upward shift in energy with increasingTe. Further, the behaviour of
the AP energy and damping cannot be reconciled to the calculations by a reduction withTe

of the 2DEG density, or a redistribution of electrons between the two quantum wells. This
leaves only exchange–correlation effects as the cause of the discrepancy between experiment
and theory. We find that the STLS approach and indeed any static local field theory cannot
effectively model the exchange–correlation effects apparent in the experimental data.

We should note also that we observed a greater discrepancy between experiment and
theory for a wavevector ofq ∼ 0.1kF than forq ∼ 0.14kF. Indeed, for the lower wavevector
the Landau damping of the AP appeared to be effectively constant over the whole temperature
range considered.
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There are a number of alternative, although less widely applied, theoretical approaches
to that of the STLS. It may be that a non-local scheme (see, e.g., references [11] and [12])
may be necessary for a true description of the excitation spectra of low-dimensional electron
systems. However, from our work the most promising candidate is probably a quantum STLS
approach, employing a frequency-dependent local field correction [14, 46], which may go
towards providing a more complete agreement between experiment and theory; we have shown
that we are able to obtain excellent agreement between experiment and theory using as a fitting
parameter a complex local field factor, as suggested in the context of a dynamical local field
theory. Our work shows that the temperature dependence of Landau damping is likely to be a
valuable experimental probe of these theories.
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Appendix A

We describe here our implementation of the STLS scheme for electron bilayers. The density
response functionsχij (q, ω) will have poles on (or infinitesimally close to) the realω-axis
which correspond physically to the energies of the plasmon modes, while the poles of the
coth function in equation (13) will lie equispaced along the imaginaryω-axis. A Wick rotation
(ω→ iω) allows us to evaluate the integral for the static structure factorsSij (q) in equation (13)
as a contour integral along the imaginaryω-axis, where the poles of the integrand are now just
the poles (γν = 2π iνkBT/h̄, ν = 0,±1,±2, . . .) of coth(h̄ω/2kBT ). The residue theorem
then allows a transformation of the integral into a sum over imaginary (Matsubara) frequencies
giving

Sij (q) = − kBT√
NiNj

ν=∞∑
ν=−∞

χij (q, γν). (A.1)

For convenience, we now assume that the two layers are of equal density, i.e.Ni = Nj =
N . Defining8ij (q, γν) = −(EF/N)χij (q, γν), we have

Sij (q) =
ν=∞∑
ν=−∞

8ij (q, γν) θ (A.2)

whereθ = kBT/EF = T/TF andEF andTF are the Fermi energy and temperature. From
equation (2) we have

8 = 81

1− ṽ2
128

2
1

(
1 −ṽ1281

−ṽ1281 1

)
(A.3)

81 = 80
2D

1 +80
2Dṽ11

. (A.4)

80
2D has been evaluated explicitly by Phatisenaet al who derived the form [47]

80
2D(q, γν) =

∫ ∞
0
kf (k)

|2 cos(φ)|
[(q4/4− k2q2 − γ 2

ν ) + q4γ 2
ν ]1/4

dk (A.5)
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wheref (k) is the Fermi–Dirac distribution function and

tan(2φ) = q2γ 2
ν

q4/4− k2q2 − γ 2
ν

. (A.6)

Note that in the case of a negative denominator, 2φ has to be replaced byπ − 2φ.
Thus in order to evaluateSij (q) we must evaluate equation (A.2) using equation (A.3).

S11(q) can be written as

S11(q) =
∞∑

ν=−∞

θ 81(q, γν)

1− ṽ2
12(q)8

2
1(q, γν)

(A.7)

which is reformulated as

S11(q) =
∞∑

ν=−∞
θ 81(q, γν)︸ ︷︷ ︸
S2D(q)

+
∞∑

ν=−∞

θ ṽ2
12(q) 8

3
1(q, γν)

1− ṽ2
12(q) 8

2
1(q, γν)︸ ︷︷ ︸

1S

. (A.8)

The first term in equation (A.8) is the structure factor for a single-electron layer,S2D(q). The
second, inter-layer term1S is O(83

1) and acts as a (small) perturbation, reflecting the small
extent to which the second layer affects intra-layer correlations.

S12(q) is given by

S12(q) = −
∞∑

ν=−∞

θ ṽ2
12(q) 8

2
1(q, γν)

1− ṽ2
12(q) 8

2
1(q, γν)

(A.9)

which is O(82
1) and hence again generally acts as a perturbation. The explicit evaluation of the

sums to calculateS11(q) andS12(q) is performed in an analogous manner to the single-layer
case, as described by Schweng and Bohm [39].

We can note in passing that the success of the relatively simple H-RPA approach when
applied to bilayer systems can be traced directly to equations (A.8) and (A.9): the H-RPA
includes quite effectively the O(81) contribution to the local field in a bilayer system.
The STLS formalism, however, includes the inter-layer exchange and correlation, and the
perturbation of the intra-layer correlations by the presence of the second layer.

We can rewrite equation (15) for the local field factorsGij (q) for the case of equal densities
in terms of dimensionless variables (Q = q/kF ,K = k/kF ) as

Gij (Q) = 1

2π

∫
dK

Q ·K
|Q||K|

F ′ij (|K|)
F ′ij (|Q|)

[δij − S ′ij (|Q−K|)] (A.10)

whereS ′ij (|Q −K|) = Sij (|q − k|) andF ′ij (|Q|) = Fij (|q|). Following Jonson in using the
substitutionC = Q−K, and witha = C/Q, we have as our final form [1]

Gij (Q) = 1

2π

∫ ∞
0

dC C [δij − S ′ij (C)]

×
∫ 2π

0
dQ

F ′ij (|Q|
√

1 +a2 + 2a cosφ)

F ′ij (|Q|)
a cosφ√

1 +a2 + 2a cosφ
. (A.11)

Equations (A.2), (A.3) and (A.11) were solved self-consistently using a method due
originally to Ng to accelerate (ensure) convergence [48]. For low number densities (i.e.rs > 2)
it was also found that the initial value ofG11(q) has to be chosen carefully in order to ensure
convergence; parametrized forms given in reference [49] were used as the initial seeds.
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